Forschungs- und Abschlussarbeiten

Gerade in der Forschung ist das FabLab hilfreich, um Ideen schnell praktisch umzusetzen und weiterzuentwickeln, und bietet damit eine gute Ergänzung zu klassischen Werkstätten mit Auftragsfertigung.  Auf dieser Seite stellen wir wissenschaftliche Arbeiten vor, die im oder mit dem FAU FabLab entstanden sind. Wenn du weitere solche Arbeiten kennst, schreibe uns bitte.

Wenn auch Du das FabLab für die Forschung verwendet hast, sind wir sehr an einem Beitrag zu dieser Seite interessiert. Im Idealfall sind das 2-5 Sätze, welche auf Englisch die Arbeit und den Zusammenhang zum FabLab zusammenfassen, ein Foto, ein Kontakt und eine zitierbare Quelle oder Link.

Um in deiner Publikation oder Arbeit auf das FAU FabLab zu verweisen, bitten wir darum, folgenden technischen Bericht zu zitieren:

Hammer J., Gaukler M., Kanzler P., Hörauf P. and Novac D. (2017, September 13).
FAU FabLab: A Fabrication Laboratory for Scientists, Students, Entrepreneurs and the Curious.
Zenodo. https://doi.org/10.5281/zenodo.890727

Zitat Export: BibTeX CSL DataCite Dublin Core JSON MARCXML Mendeley

Wissenschaftliche Veröffentlichungen

Sample tray, lasercut in the FabLab

Nicolas Johner and Lukas Maurer, from the Helmholtz-Institute Erlangen-Nürnberg for renewable energy (HI-ERN), are researching catalyzers and surface coatings for hydrogen storage.They used the laser cutter from the FabLab to build a tray for 64 glass vials. With this tray, the capacity of measuring eight samples at a time (previously) could be increased to 64. This has many applications for which the samples have to be shaking gently over a longer period, e.g. determination of point of zero charge or other titrations.

Nicolas Johner, M.Sc. <n.johner@fz-juelich.de>

Zakgeym, Dina, et al. "Better through oxygen functionality? The benzophenone/dicyclohexylmethanol LOHC-system." Sustainable Energy & Fuels 7.5 (2023): 1213-1222.
https://doi.org/10.1039/D2SE01750D

https://www.hi-ern.de/de/forschung/stoffliche-wasserstoffspeicherung/aktive-beschichtungen-und-katalysatortechnologien

André Aichert investigates calibration techniques for flat-panel detector computer tomography systems. During his research he required a configurable phantom – a precise target with known configuration – to relate reality to the detected image. Using 3D printers at the FAU FabLab a placeholder phantom matrix (pen) was created, which allows metal bearings balls to be placed in a precise way. The metal balls can then be „seen“ by the X-Ray detector and used for calibration.

André Aichert <aaichert@gmail.com>

André Aichert, Bastian Bier, Leonhard Rist and Andreas K. Maier; 2018
Projective Invariants for Geometric Calibration in Flat Panel Computed Tomography
https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2018/Aichert18-PIF.pdf

Navid Bonakdar, from the Max Planck Institute for the Science of Light (MPL), built a chamber for the fabrication of giant lipid vesicles as a model systems for cell membranes. This allowed researchers from MPL and FAU to evaluate membrane model systems for an overview study under physiological conditions.

Dr. Navid Bonakdar <navid.bonakdar@mpl.mpg.de>

Stein H, Spindler S, Bonakdar N, Wang C and Sandoghdar V; 2017
Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations;
Front. Physiol. 8:63;
doi: 10.3389/fphys.2017.00063
http://journal.frontiersin.org/article/10.3389/fphys.2017.00063/full

Martin Schütz et al. introduced a novel, tailor-made UAV-based sensor platform, HeliSAR, that potentially allows interferometric SAR remote sensing based on a bistatic MIMO radarsystem. Many parts of the system were build in the FAU FabLab, using the CNC mill, laser cutter, 3D printers, circuit board etching and many more capabilities.

Martin Schütz <martin.schuetz@fau.de>

M. Schuetz, M. Oesterlein, C. Birkenhauer and M. Vossiek; 2017
A custom lightweight UAV for radar remote sensing: Concept design, properties and possible applications;
2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, 2017, pp. 107-110.;
doi: 10.1109/ICMIM.2017.7918868
http://ieeexplore.ieee.org/document/7918868/

In their publication, Schaller et al. investigated the local building blocks of packings of aspherical grains, found in granular and glassy systems. In order to demonstrate their findings, they made use of the FabLab to produce 3D printed physical representations of local structures.

Dr. Sebastian Kapfer <sebastian.kapfer@fau.de>

Fabian M. Schaller, Robert F. B. Weigel, and Sebastian C. Kapfer; 2016
Densest Local Structures of Uniaxial Ellipsoids
Phys. Rev. X 6, 041032;
doi: 10.1103/PhysRevX.6.041032
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.041032

Masterarbeiten

Heart valve implants represent the standard method to treat severe malfunctions of human aortic valves. To further optimize biological implants, their tissue component out of, e. g., porcine pericardium, need to be characterized in detail. During my master thesis I developed a test station for biaxial tensile testing of biological tissue. The FAU FabLab supported me by providing a laser cutter, so that tensile samples could be cut out of the tissue and the measurements of porcine pericardium could be realized.

Nina Lehenberger <nina.lehenberger@biomed.uni-erlangen.de>

Nina Lehenberger; 2013
Charakterisierung der mechanischen Eigenschaften von porcinem Perikard durch Entwicklung eines biaxialen Prüfstandes;
Masterarbeit aus der Physik; Max Schaldach-Stiftungsprofessur für Biomedizinische Technik;
Friedrich-Alexander-Universität Erlangen-Nürnberg;

Bachelorarbeiten

Robert Weigel modelled ellipsoid packing for his Bachelor’s Thesis. Such models are vital for the understanding of unstructured material packing processes with materials such as sand or glass. To visualize and demonstrate the theoretical work 3D printed ellipsoid structures were produced in the FAU FabLab.

Robert Weigel <robert.rw.weigel@fau.de>

Robert Weigel; 2016
Locally Densest Packings of Ellipsoids per Simulated Annealing.
Bachelorarbeit in der Physik; Institut für Theoretische Physik 1;
Friedreich-Alexander-Universität Erlangen-Nürnberg;

Toni Bartsch used the FabLab during his bachelor’s thesis, designing a programmable constant and spike free power supply for integrated circuit testing. For safety and practical use in a research and testing environment, a protective case out of solid aluminum had to be designed and manufactured, as well as an acrylic front cover.

Toni Bartsch

Toni Bartsch; 2015
Entwurf eines konfigurierbaren Spannungsversorgungsystems für den IC-Test;
Bacheloararbeit in der Elektrotechnik; Lehrstuhl für technische Elektronik;
Friedrich-Alexander-Universität Erlangen-Nürnberg;

Timo Voigt investigated in his Bachelor’s thesis the application of a laser cutter for bending of acrylic. Thus, extending its capabilities from a 2D cutting to a 3D sheet prototyping machine.

Timo Voigt <timo.voigt@fau.de>

Timo Voigt; 2014
LaserOrigami: Von 2D zu 3D
Bachelorarbeit in der Informatik; Lehrstuhl für Rechnernetze und Kommunikationssysteme;
Friedrich-Alexander-Universität Erlangen-Nürnberg;

Sonstiger Einsatz

The Eu:CROPIS satellite is developed by the German Aerospace Center (DLR), simulating the effects of lunar and martian gravity on germination and growth of tomato plants for future interplanetary missions. Sebastian Strauch, researcher at the Cellular Biology research group, used a laser cutter at the FAU FabLab to manufacture Mylar foil stencils needed in production of a circuit board used on board of the satellite.

Dr. Sebastian M. Strauch <sebastian.m.strauch@fau.de>

https://www.fau.de/2014/04/news/wissenschaft/tomaten-im-weltall/

In the investigation of quasicrystals by Sebastian Kapfer, a two dimensional model was cut out of acrylic at the FAU FabLab. Quasicrystals include additional degrees of freedom (phasons) over the ones known from periodic crystals (phonons). How these lead to new kinds of topological defects is currently being investigated.

Dr. Sebastian Kapfer <sebastian.kapfer@fau.de>

http://www.theorie1.physik.fau.de/people/skapfer/index.html

Lehrveranstaltungen

Im Rahmen folgender Lehrveranstaltungen wird das FabLab mitgenutzt (grob nach dem Fablab-Anteil sortiert):

  • DIY – Individual Prototyping and Systems Engineering (Vorlesung und Übung rund ums FabLab)
  • Innovationslabor für Wearable und Ubiquitous Computing
  • Praktikum mechatronische Systeme
  • Scientific Speed Dating: Engineering Meets Medicine
  • Physikalisches Projektpraktikum
  • 5-Euro-Business

Außerdem beteiligen wir uns an:

  • Lötabend zu „Systemnahe Programmierung in C“
  • Erstsemestermesse „Willkommen an der FAU“
  • Erstsemestereinführung der Technischen Fakultät
  • Schnupperuni
  • Mädchen-und-Technik-Praktikum, Jugend-und-Technik-Praktikum
  • Forscherinnen-Camp
  • Schülertag, Girls‘ Day
  • Lange Nacht der Wissenschaften